TRAF7
TNF receptor associated factor 7
Tumor necrosis factor (TNF; see MIM 191160) receptor-associated factors, such as TRAF7, are signal transducers for members of the TNF receptor superfamily (see MIM 191190). TRAFs are composed of an N-terminal cysteine/histidine-rich region containing zinc RING and/or zinc finger motifs; a coiled-coil (leucine zipper) motif; and a homologous region that defines the TRAF family, the TRAF domain, which is involved in self-association and receptor binding.
Genetic aberrations (TRAF7, KLF4, AKT1, and SMO) and the effects of genetic aberrations on the expression of immune checkpoint inhibitory molecules (PD-L1, IDO, and TDO2) in skull base meningiomas are still unclear.
Genetic alterations in the four genes were identified in 92 skull base meningiomas by Sanger sequencing. The expression differences in immune checkpoints between mutant and wild-type (WT) tumors were determined by immunohistochemistry (IHC) and Western blot (WB).
The four mutations were not concurrently detected in the patients with skull base meningiomas. Among the tumors from the KLF4-mutated group, almost half were petroclival meningiomas. KLF4- and TRAF7-mutated tumors were predominantly secretory meningiomas. SMO-mutated tumors exhibited higher calcification, and half of these tumors were observed in the brain midline. Receiver operating characteristic curve analysis indicated that tumor volume can predict KLF4 and TRAF7 mutation status with high sensitivity and specificity, respectively. The IHC and WB analyses indicated that PD-L1, IDO, and TDO2 levels in tumors with TRAF7 mutations were significantly higher than those in WT tumors. Meanwhile, there was a significant difference in TDO2 between tumors with AKT1 mutations and WT tumors. Specifically, TRAF7 mutations could play a key role in skull base meningiomas by regulating the expression of inhibitory immune checkpoints and thus suppressing immune responses.
Checkpoint inhibitors may be potential strategies for targeted immunotherapies of these mutant meningiomas 1).
In a genomic analysis of 300 meningiomas, lead to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7 commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive-nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres 2).
Unclassified
2: Sheng HS, Shen F, Zhang N, Yu LS, Lu XQ, Zhang Z, Fang HY, Zhou LL, Lin J. Whole exome sequencing of multiple meningiomas with varying histopathological presentation in one patient revealed distinctive somatic mutation burden and independent clonal origins. Cancer Manag Res. 2019 May 6;11:4085-4095. doi: 10.2147/CMAR.S202394. eCollection 2019. PubMed PMID: 31123420; PubMed Central PMCID: PMC6510395.
3: Carter JM, Wu Y, Blessing MM, Folpe AL, Thorland EC, Spinner RJ, Jentoft ME, Wang C, Baheti S, Niu Z, Mauermann ML, Klein CJ. Recurrent Genomic Alterations in Soft Tissue Perineuriomas. Am J Surg Pathol. 2018 Dec;42(12):1708-1714. doi: 10.1097/PAS.0000000000001169. PubMed PMID: 30303818.
4: Karsy M, Azab MA, Abou-Al-Shaar H, Guan J, Eli I, Jensen RL, Ormond DR. Clinical potential of meningioma genomic insights: a practical review for neurosurgeons. Neurosurg Focus. 2018 Jun;44(6):E10. doi: 10.3171/2018.2.FOCUS1849. PubMed PMID: 29852774.
5: Bi WL, Prabhu VC, Dunn IF. High-grade meningiomas: biology and implications. Neurosurg Focus. 2018 Apr;44(4):E2. doi: 10.3171/2017.12.FOCUS17756. PubMed PMID: 29606053.
6: Apra C, Peyre M, Kalamarides M. Current treatment options for meningioma. Expert Rev Neurother. 2018 Mar;18(3):241-249. doi: 10.1080/14737175.2018.1429920. Epub 2018 Jan 22. Review. PubMed PMID: 29338455.
7: Peyre M, Gaillard S, de Marcellus C, Giry M, Bielle F, Villa C, Boch AL, Loiseau H, Baussart B, Cazabat L, Raffin-Sanson ML, Sanson M, Kalamarides M. Progestin-associated shift of meningioma mutational landscape. Ann Oncol. 2018 Mar 1;29(3):681-686. doi: 10.1093/annonc/mdx763. PubMed PMID: 29206892.
8: Battu S, Kumar A, Pathak P, Purkait S, Dhawan L, Sharma MC, Suri A, Singh M, Sarkar C, Suri V. Clinicopathological and molecular characteristics of pediatric meningiomas. Neuropathology. 2018 Feb;38(1):22-33. doi: 10.1111/neup.12426. Epub 2017 Sep 13. PubMed PMID: 28901666.
9: Agnihotri S, Suppiah S, Tonge PD, Jalali S, Danesh A, Bruce JP, Mamatjan Y, Klironomos G, Gonen L, Au K, Mansouri S, Karimi S, Sahm F, von Deimling A, Taylor MD, Laperriere NJ, Pugh TJ, Aldape KD, Zadeh G. Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas. Nat Commun. 2017 Aug 4;8(1):186. doi: 10.1038/s41467-017-00174-7. PubMed PMID: 28775249; PubMed Central PMCID: PMC5543118.
10: Mei Y, Bi WL, Greenwald NF, Agar NY, Beroukhim R, Dunn GP, Dunn IF. Genomic profile of human meningioma cell lines. PLoS One. 2017 May 26;12(5):e0178322. doi: 10.1371/journal.pone.0178322. eCollection 2017. PubMed PMID: 28552950; PubMed Central PMCID: PMC5446134.
11: Peyre M, Feuvret L, Sanson M, Navarro S, Boch AL, Loiseau H, Kalamarides M. Diffuse midline skull base meningiomas: identification of a rare and aggressive subgroup of meningiomas. J Neurooncol. 2017 Jul;133(3):633-639. doi: 10.1007/s11060-017-2480-2. Epub 2017 May 23. PubMed PMID: 28536991.
12: Yesilöz Ü, Kirches E, Hartmann C, Scholz J, Kropf S, Sahm F, Nakamura M, Mawrin C. Frequent AKT1E17K mutations in skull base meningiomas are associated with mTOR and ERK1/2 activation and reduced time to tumor recurrence. Neuro Oncol. 2017 Aug 1;19(8):1088-1096. doi: 10.1093/neuonc/nox018. PubMed PMID: 28482067; PubMed Central PMCID: PMC5570238.
13: Sahm F, Schrimpf D, Stichel D, Jones DTW, Hielscher T, Schefzyk S, Okonechnikov K, Koelsche C, Reuss DE, Capper D, Sturm D, Wirsching HG, Berghoff AS, Baumgarten P, Kratz A, Huang K, Wefers AK, Hovestadt V, Sill M, Ellis HP, Kurian KM, Okuducu AF, Jungk C, Drueschler K, Schick M, Bewerunge-Hudler M, Mawrin C, Seiz-Rosenhagen M, Ketter R, Simon M, Westphal M, Lamszus K, Becker A, Koch A, Schittenhelm J, Rushing EJ, Collins VP, Brehmer S, Chavez L, Platten M, Hänggi D, Unterberg A, Paulus W, Wick W, Pfister SM, Mittelbronn M, Preusser M, Herold-Mende C, Weller M, von Deimling A. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017 May;18(5):682-694. doi: 10.1016/S1470-2045(17)30155-9. Epub 2017 Mar 15. PubMed PMID: 28314689.
14: Klein CJ, Wu Y, Jentoft ME, Mer G, Spinner RJ, Dyck PJ, Dyck PJ, Mauermann ML. Genomic analysis reveals frequent TRAF7 mutations in intraneural perineuriomas. Ann Neurol. 2017 Feb;81(2):316-321. doi: 10.1002/ana.24854. Epub 2017 Jan 28. PubMed PMID: 28019650; PubMed Central PMCID: PMC5725965.
15: Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, Ercan-Sencicek AG, Abraham BJ, Weintraub AS, Hnisz D, Simon M, Krischek B, Erson-Omay EZ, Henegariu O, Carrión-Grant G, Mishra-Gorur K, Durán D, Goldmann JE, Schramm J, Goldbrunner R, Piepmeier JM, Vortmeyer AO, Günel JM, Bilgüvar K, Yasuno K, Young RA, Günel M. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016 Oct;48(10):1253-9. doi: 10.1038/ng.3651. Epub 2016 Aug 22. PubMed PMID: 27548314; PubMed Central PMCID: PMC5114141.
16: Bi WL, Zhang M, Wu WW, Mei Y, Dunn IF. Meningioma Genomics: Diagnostic, Prognostic, and Therapeutic Applications. Front Surg. 2016 Jul 6;3:40. doi: 10.3389/fsurg.2016.00040. eCollection 2016. Review. PubMed PMID: 27458586; PubMed Central PMCID: PMC4933705.
17: Le Rhun E, Taillibert S, Chamberlain MC. Systemic therapy for recurrent meningioma. Expert Rev Neurother. 2016 Aug;16(8):889-901. doi: 10.1080/14737175.2016.1184087. Epub 2016 May 19. PubMed PMID: 27123883.
18: Yuzawa S, Nishihara H, Yamaguchi S, Mohri H, Wang L, Kimura T, Tsuda M, Tanino M, Kobayashi H, Terasaka S, Houkin K, Sato N, Tanaka S. Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system. Mod Pathol. 2016 Jul;29(7):708-16. doi: 10.1038/modpathol.2016.81. Epub 2016 Apr 22. PubMed PMID: 27102344.
19: Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, Listewnik ML, Dias-Santagata D, Thorner AR, Van Hummelen P, Brastianos PK, Reardon DA, Wen PY, Al-Mefty O, Ramkissoon SH, Folkerth RD, Ligon KL, Ligon AH, Alexander BM, Dunn IF, Beroukhim R, Santagata S. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016 May;18(5):649-55. doi: 10.1093/neuonc/nov316. Epub 2016 Jan 28. PubMed PMID: 26826201; PubMed Central PMCID: PMC4827048.
20: Li N, Liu P, Wang L, Liu J, Yuan X, Meng W, Dong Y, Li B. Effect of Ipr1 on expression levels of immune genes related to macrophage anti-infection of mycobacterium tuberculosis. Int J Clin Exp Med. 2015 Mar 15;8(3):3411-9. eCollection 2015. PubMed PMID: 26064231; PubMed Central PMCID: PMC4443065.
21: Domingues P, González-Tablas M, Otero Á, Pascual D, Ruiz L, Miranda D, Sousa P, Gonçalves JM, Lopes MC, Orfao A, Tabernero MD. Genetic/molecular alterations of meningiomas and the signaling pathways targeted. Oncotarget. 2015 May 10;6(13):10671-88. Review. PubMed PMID: 25965831; PubMed Central PMCID: PMC4484411.
22: Parry PV, Engh JA. Genomic analysis of non-neurofibromatosis type 2 meningiomas. Neurosurgery. 2013 Jun;72(6):N18-9. doi: 10.1227/01.neu.0000430737.55867.9f. PubMed PMID: 23685513.